Motivation: Unterschied zwischen den Versionen

Aus EINI
Wechseln zu: Navigation, Suche
(Einführung in die Notation)
Zeile 3: Zeile 3:
 
Viele Probleme in der Mathematik lassen sich auf lineare Gleichungssysteme zurückführen. Im Folgenden wollen wir uns daher damit beschäftigen, wie man entsprechende LGS mithilfe eines Eliminationsverfahrens mit Spaltenpivotierung lösen kann und wollen insbesondere auf die Implementierung in Java eingehen. Diese Anwendung soll hierbei nur die Möglichkeiten von Java verdeutlichen und nicht auf eine Optimierung der Laufzeit oder Ausnutzung spezieller Besetzungsstrukturen von Matrizen beruhen.
 
Viele Probleme in der Mathematik lassen sich auf lineare Gleichungssysteme zurückführen. Im Folgenden wollen wir uns daher damit beschäftigen, wie man entsprechende LGS mithilfe eines Eliminationsverfahrens mit Spaltenpivotierung lösen kann und wollen insbesondere auf die Implementierung in Java eingehen. Diese Anwendung soll hierbei nur die Möglichkeiten von Java verdeutlichen und nicht auf eine Optimierung der Laufzeit oder Ausnutzung spezieller Besetzungsstrukturen von Matrizen beruhen.
  
Wir wollen letztlich eine Implementierung einer direkten Lösungsmethode für (reelle) quadratische lineare Gleichungssysteme erstellen und diese anwenden. Die Implementierung basiert im Wesentlichen auf dem Gaußschen Eliminationsverfahren, welches durch diverse Veranstaltungen bekannt ist.
+
Wir wollen letztlich eine Implementierung einer direkten Lösungsmethode für (reguläre, reelle) quadratische lineare Gleichungssysteme erstellen und diese anwenden. Die Implementierung basiert im Wesentlichen auf dem Gaußschen Eliminationsverfahren, welches durch diverse Veranstaltungen bekannt ist.
  
 
==Gestaffelte Systeme==
 
==Gestaffelte Systeme==
Zeile 16: Zeile 16:
  
 
folgenden Algorithmus:
 
folgenden Algorithmus:
 +
 +
==Sukzessives Rückwärtseinsetzen==
 +
 +
Da wir nur reguläre Systeme betrachten, müssen die Diagonaleinträge der oberen Dreiecksmatrix stets ungleich 0 nach Grundkenntnissen der Linearen Algebra sein. somit können wir durch Umstellen und Dividieren eine Lösung erhalten:
 +
 +
x_n = b_n / a_nn

Version vom 9. März 2020, 19:26 Uhr

Einleitung

Viele Probleme in der Mathematik lassen sich auf lineare Gleichungssysteme zurückführen. Im Folgenden wollen wir uns daher damit beschäftigen, wie man entsprechende LGS mithilfe eines Eliminationsverfahrens mit Spaltenpivotierung lösen kann und wollen insbesondere auf die Implementierung in Java eingehen. Diese Anwendung soll hierbei nur die Möglichkeiten von Java verdeutlichen und nicht auf eine Optimierung der Laufzeit oder Ausnutzung spezieller Besetzungsstrukturen von Matrizen beruhen.

Wir wollen letztlich eine Implementierung einer direkten Lösungsmethode für (reguläre, reelle) quadratische lineare Gleichungssysteme erstellen und diese anwenden. Die Implementierung basiert im Wesentlichen auf dem Gaußschen Eliminationsverfahren, welches durch diverse Veranstaltungen bekannt ist.

Gestaffelte Systeme

Wenn wir eine obere Dreiecksmatrix A als Koeffizientmatrix unseres regulären LGS haben, lässt sich dies leicht durch rückwärts einsetzen lösen: In der letzten Zeile ist nur eine unbekannte Komponente des Vektors in einer linearen Gleichung, in der vorletzten Zeile gibt es nur zwei Unbekannte, wobei wir eine der Unbekannten schon durch vorherige bestimmen können und damit diese Gleichung uns durch Umstellen noch eine Unbekannte bestimmen lässt. So erhalten wir für Systeme der Form

a_11*x_1 + a_12*x_2 + ... + a_1n*x_n = b_1
           a_22*x_2 + ... + a_2n*x_n = b_2
                                    ...
                            a_nn*x_n = b_n

folgenden Algorithmus:

Sukzessives Rückwärtseinsetzen

Da wir nur reguläre Systeme betrachten, müssen die Diagonaleinträge der oberen Dreiecksmatrix stets ungleich 0 nach Grundkenntnissen der Linearen Algebra sein. somit können wir durch Umstellen und Dividieren eine Lösung erhalten:

x_n = b_n / a_nn