Boolesche Algebra

Aus EINI
Version vom 17. Dezember 2015, 13:04 Uhr von Hauer (Diskussion | Beiträge) (Konjunktion (AND))

Wechseln zu: Navigation, Suche


Die bool'sche Operatoren

Konjunktion (AND)

Die Konjunktion ist eine der grundlegenden logischen Verknüpfungen der Aussagenlogik. Die Konjunktion zweier Aussagen A und B ist genau dann wahr, wenn sowohl A und B wahr sind. Das mathematiche Symbol ist . In Java wird das AND durch && repräsentiert.

A B A ∧ B
false false false
false true false
true false false
true true true
Venn and.png

Disjunktion (OR)

Die Disjunktion ist eine der grundlegenden logischen Verknüpfungen der Aussagenlogik. Die Disjunktion zweier Aussagen A und B ist genau dann wahr, wenn mindestens eine der Aussagen A oder B wahr ist. Das mathematische Symbol ist . In Java wird das OR durch || repräsentiert.

A B A ∨ B
false false false
false true true
true false true
true true true

Venn-Diagramm?

Negation (NOT)

Die Negation ist eine wichtige Operation in der Aussagenlogik. Die Negation einer Aussage A führt zur ihrer Verneinung, d.h. aus einer wahren Aussage wird eine falsche Aussage und umgekehrt. Das mathematische Symbol ist ¬. In Java wird das NOT durch ! repräsentiert.

A ¬A
false true
true false

Kontravalenz (XOR)

Die Kontravalenz ist eine erweiterte logische Verknüpfung in der Aussagenlogik. Die Kontravalenz zweier Aussagen A und B ist genau dann wahr, wenn entweder A oder B, aber nicht beide wahr sind. Das mathematische Symbol ist . In Java wird das XOR durch ^ repräsentiert.

A B A ∨ B
false false false
false true true
true false true
true true false

Venn-Diagramm?

Implikation

Die Implikation ist eine erweiterte logische Verknüpfung in der Aussagenlogik. Die Implikation zweier Aussagen A und B ist genau dann wahr, wenn A falsch oder B wahr ist. Das mathematische Symbol ist . Die Implikation ist [semantisch äquivalent] zu ¬A ∨ B. In Java gibt es keinen Implikationsoperator. Eine Implikation wird meistens durch "wenn A, dann B" im Deutschem ausgedrückt.

A B A ⇒ B
false false true
false true true
true false false
true true true

Venn-Diagramm?

Äquivalenz (XNOR)

Die Äquivalenz ist eine erweiterte logische Verknüpfung in der Aussagenlogik. Die Äquivalenz zweier Aussagen A und B ist genau dann wahr, wenn A und B wahr oder A und B falsch sind. Das mathematische Symbol ist . Die Äquivalenz ist [semantisch äquivalent] zu A ∧ B ∨ ¬A ∧ ¬B. In Java gibt es keinen Operator hierfür. Die Äquivalenz wird meistens durch "genau dann A, wenn B" im Deutschem ausgedrückt.

A B A ⇔ B
false false true
false true false
true false false
true true true

Venn-Diagramm?

Peano-Axiome (erweitertes Wissen)

Kommutativgesetze

(1) ABBA

(1') ABBA


Assoziativgesetze

(2) (AB) ∧ CA ∧ (BC)

(2') (AB) ∨ CA ∨ (BC)


Idempotenzgesetze

(3) AAA

(3') AAA


Distributivgesetze

(4) A ∧ (BC) ≡ (AB) ∨ (AC)

(4') A ∨ (BC) ≡ (AB) ∧ (AC)


Neutralitätsgesetze

(5) AtrueA

(5') AfalseA


Extremalgesetze

(6) Afalsefalse

(6') Atruetrue


Doppelnegationsgesetz

(7) ¬¬AA


De Morgansche Gesetze

unwichtig?


Komplementärgesetze

(8) A ∧ ¬Afalse

(8') A ∨ ¬Atrue


Dualitätsgesetze

unwihtig?


Absorptionsgesetze

unwichtig?